Learning Latent Groups with Hinge-loss Markov Random Fields

نویسندگان

  • Stephen H. Bach
  • Bert Huang
چکیده

Probabilistic models with latent variables are powerful tools that can help explain related phenomena by mediating dependencies among them. Learning in the presence of latent variables can be difficult though, because of the difficulty of marginalizing them out, or, more commonly, maximizing a lower bound on the marginal likelihood. In this work, we show how to learn hinge-loss Markov random fields (HL-MRFs) that contain latent variables. HL-MRFs are an expressive class of undirected probabilistic graphical models for which inference of most probable explanations is a convex optimization. By incorporating latent variables into HL-MRFs, we can build models that express rich dependencies among those latent variables. We use a hard expectation-maximization algorithm to learn the parameters of such a model, leveraging fast inference for learning. In our experiments, this combination of inference and learning discovers useful groups of users and hashtags in a Twitter data set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paired-Dual Learning for Fast Training of Latent Variable Hinge-Loss MRFs

Latent variables allow probabilistic graphical models to capture nuance and structure in important domains such as network science, natural language processing, and computer vision. Naive approaches to learning such complex models can be prohibitively expensive—because they require repeated inferences to update beliefs about latent variables—so lifting this restriction for useful classes of mod...

متن کامل

Intelligent Multitrack Reverberation Based on Hinge-Loss Markov Random Fields

We propose a machine learning approach based on hinge-loss Markov random fields to solve the problem of applying reverb automatically to a multitrack session. With the objective of obtaining perceptually meaningful results, a set of Probabilistic Soft Logic (PSL) rules has been defined based on best practices recommended by experts. These rules have been weighted according to the level of confi...

متن کامل

Hinge-Loss Markov Random Fields and Probabilistic Soft Logic

This paper introduces hinge-loss Markov random fields (HL-MRFs), a new class of probabilistic graphical models particularly well-suited to large-scale structured prediction and learning. We derive HL-MRFs by unifying and then generalizing three different approaches to scalable inference in structured models: (1) randomized algorithms for MAX SAT, (2) local consistency relaxation for Markov rand...

متن کامل

Hinge-Loss Markov Random Fields and Probabilistic Soft Logic: A Scalable Approach to Structured Prediction

Title of dissertation: HINGE-LOSS MARKOV RANDOM FIELDS AND PROBABILISTIC SOFT LOGIC: A SCALABLE APPROACH TO STRUCTURED PREDICTION Stephen Hilliard Bach, Doctor of Philosophy, 2015 Dissertation directed by: Professor Lise Getoor Department of Computer Science A fundamental challenge in developing impactful artificial intelligence technologies is balancing the ability to model rich, structured do...

متن کامل

Hinge-loss Markov Random Fields: Convex Inference for Structured Prediction

Graphical models for structured domains are powerful tools, but the computational complexities of combinatorial prediction spaces can force restrictions on models, or require approximate inference in order to be tractable. Instead of working in a combinatorial space, we use hinge-loss Markov random fields (HL-MRFs), an expressive class of graphical models with log-concave density functions over...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013